#1
|
|||
|
|||
Simple Physics Question re SS Gearing
Wheels, tires, crankset, frame, etc all being the same, does a 53x21 gear (69.1 inches) require more, less, or the same amount of energy to move as a 43x17 (69.3* inches)?
*let's pretend they produce a gear with exactly equal gear inches. |
#2
|
||||
|
||||
The 49x17 combo will produce more friction than the 53x21 will.
__________________
"Progress is made by lazy men looking for easier ways to do things." - Robert Heinlein |
#3
|
|||
|
|||
But if you wax the chain ......
|
#4
|
||||
|
||||
Then it'll have more friction than the waxed chain on the 53x21...
__________________
"Progress is made by lazy men looking for easier ways to do things." - Robert Heinlein |
#5
|
|||
|
|||
indeed...
__________________
This foot tastes terrible! |
#6
|
|||
|
|||
Thanks. Aside from friction, I'm curious more about what the energy required to get them both rolling at the same speed. If I took this to the extreme and say a 63x25 or even larger gear.
|
#7
|
||||
|
||||
If you throw out the frictional losses, I don't know that there'd be any difference large enough for you to measure.
__________________
"Progress is made by lazy men looking for easier ways to do things." - Robert Heinlein |
#8
|
||||
|
||||
Generally speaking you want more teeth on the rear cog. They get less round as they have less teeth, and they get pretty inefficient. Think of a 1 tooth cog or a 2 tooth cog - that wouldn't be very efficient. Shimano dedicated an engineer to optimizing cog shape when they went to either 11 or 12t because at that point the cog was getting pretty out of round.
I'm sure there's a counter point where if you have a massive number of teeth, the inefficiency of the extra structure just makes it inefficient. For example, if instead of a 49x17 you had a 490 x 170 (ignoring ground clearance etc), there'd be so much chain (and relevant friction) that the extra "roundness" of a 170t cog wouldn't be worth it. |
#9
|
|||
|
|||
Not specifically SS, but I have tried this with a fixed gear. I race at the local velodrome (Hellyer). I have participated in probably ~70 race nights, primarily mass start omniums.
I previously ran 51x14 (95.6), but have since switched to 58x16 (95.2). It was immediately noticeable how much smoother the system felt. The perceived effort to "get it moving" when responding to accelerations also felt seemingly easier and I could maintain my speed/cadence better once up to speed. |
#10
|
|||
|
|||
Quote:
Ek = 1/2 x Mass x Velocity^2 So if you assume no losses (such as friction), then the forces, torques, gear ratios, etc. don't matter - getting a given mass up to a give speed takes the same energy regardless. But of course, there are losses, and that will affect the energy expended to achieve and maintain a given speed. As others noted, the sprocket/chainring sizes will affect the frictional losses, with smaller chainrings/sprockets having more losses than larger, all else being the same. So with the smaller chainring/sprockets, not only will it take more energy to get up to speed, but more energy will need to be continually applied to maintain that speed. As a secondary matter, smaller chainrings/sprockets will have a little less mass, so a little less kinetic energy is required to reach a given speed. But the mass of the chainrings/sprockets is just a very small part of the total mass, and the benefit of the smaller mass will be much less than the extra losses from the extra friction with smaller chainring/sprockets, so that the larger chainring/sprockets will require less total energy. |
|
|